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Computation of strongly swirling con�ned �ows with cubic
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SUMMARY

An investigation on the predictive performance of four cubic eddy-viscosity turbulence models for two
strongly swirling con�ned �ows is presented. Comparisons of the prediction with the experiments show
clearly the superiority of cubic models over the linear k–� model. The linear k–� model does not contain
any mechanism to describe the stabilizing e�ects of swirling motion and as a consequence it performs
poorly. Cubic models return a lower level of Reynolds stresses and the combined forced-free vortex
pro�les of tangential velocity close to the measurements in response to the interaction between swirl-
induced curvature and stresses. However, a fully developed rotating pipe �ow is too simple to contain
enough �ow physics, so the calibration of cubic terms is still a topic of investigation. It is shown that
explicit algebraic stress models require fewer calibrations and contain more �ow physics. Copyright ?
2003 John Wiley & Sons, Ltd.

KEY WORDS: strongly swirling �ow; con�ned �ow; turbulence modelling; cubic eddy-viscosity
models

1. INTRODUCTION

Swirling �ows are widely used in industrial applications, such as combustion chambers and
furnaces, to aid stabilizing the �ame and create a region of strong shear to enhance mix-
ing process. The structure of the turbulence is highly sensitive to the swirl-induced body
forces. So the turbulence models used should contain an inherent mechanism capable of cap-
turing this sensitivity. For a fully developed rotating pipe �ow, the widely used standard
k–� model is well recognized to predict a solid body rotation for the tangential velocity while
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experimental data show a near-parabolic distribution [1]. Since swirl introduces intense tangen-
tial streamline curvature and hence curvature–turbulence interaction a�ects all six independent
stress components, second-order closures have been suggested for modelling of swirling �ows
[2–4]. However, the extra computational cost and the careful numerical method prevent them
from being widely applied. Non-linear eddy-viscosity turbulence models o�er a better balance
between accuracy and cost [1, 5]. The quadratic terms and the strain/vorticity-dependent co-
e�cients are responsible for the ability to capture anisotropy, and the cubic terms can re�ect
the e�ect of curvature [6]. The cubic term can also capture the swirling e�ect [7].
The present study aims at investigating the capability of variants of cubic eddy viscosity

turbulence models on strongly swirling �ows. Two experimental test cases have been selected
for model validation. The �rst test case is an axially rotating pipe �ow of Imao et al. [8].
The second test case is a strongly swirling con�ned jet �ow examined by So et al. [9]. Four
cubic eddy viscosity turbulence models under low-Re k–� framework are Craft et al. [10]
(CLS), Apsley and Leschziner [11] (AL), Shih et al. [1] (SHIH), Merci et al. [12] (MDVD).
For comparison, low-Re k–� model of Launder and Sharma [13] is chosen as the standard
model (SKE). All models are compared under the same numerical framework, with the same
discretization scheme and iterative solver.

2. GOVERNING EQUATIONS

For an isothermal, incompressible, axisymmetric swirling �ow in cylindrical co-ordinates,
the general form of the governing equations, including the Reynolds-averaged Navier–Stokes
equations and the turbulent transport equations, can be expressed as
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where t is time. x; r; � are the axial, radial and tangential co-ordinates, respectively, and U;V;W
are the corresponding mean velocity components. � is the �uid density. S� is the source term
and �� is the e�ective viscosity for the di�erent variables �, as given in Table I.
In Table I, �p=p + 2

3�k, and the eddy viscosity �t =�C�f�k
2=�. The term D is non-zero

only for models adopting homogeneous dissipation rate �̃= � − D. S� is designed to provide
the correct near-wall viscous sublayer behaviour. f1, f2 and f� are wall damping functions.
�ij is the non-linear part of the Reynolds stresses. Gk is the production rate of the turbulent
kinetic energy.

3. CUBIC EDDY–VISCOSITY MODELS

The dimensionless Reynolds-stress anisotropy tensor is de�ned by

aij=
uiuj
k

− 2
3
�ij (2)

Although the foundation and derivation of di�erent models can di�er greatly, for non-linear
eddy-viscosity models up to cubic order, the stress–strain relationship in incompressible �ow
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Table I. The e�ective viscosity and the source term expressions for the
independent variables in Equation (1).

Variable � �� S�

Mass 1 0 0

Axial momentum (x-direction) U �l + �t
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Turbulent kinetic energy k �l + �t=�k Gk − ��− �D

Dissipation rate � �l + �t=��
�
k
(Clf1Gk − C2f2��) + �S�

may be written in the following canonical form

aij= − 2C�f�sij + Aij (3)

Aij = 	1(sikskj − 1
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The non-linear part of the Reynolds stresses

�ij= − �kAij (5)

Under the k–� framework, the components of dimensionless mean strain and mean vorticity
tensors are denoted by
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Note that sij= sji and wij= − wji.
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3.1. Craft, Launder & Suga (1996) [10] (CLS)

Coe�cients of this model are optimized over a wide range of �ows:

C�=
0:3{1− exp[−0:36=exp(−0:75�)]}

1 + 0:35�3=2
; �= max(�s; �w) (7)

where the dimensionless strain invariant and vorticity invariant can be written as

�s≡
√
2sklskl; �w ≡

√
2wklwkl (8)

	1 = 0:4C�f�; 	2 = 0:4C�f�; 	3 = − 1:04C�f�

1 = 
2 = 40C3�f�; 
3 = 0; 
4 = − 80C3�f� (9)

f�=1− exp[−
√
Rt=90− (Rt=400)2] (10)

f1 = 1; f2 = 1− 0:3 exp(−R2t ) (11)

where Rt ≡ k2=�� is the turbulent Reynolds number.
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When Rt6250, S�=0:0022 �s�tk2
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3.2. Apsley and Leschziner (1998) [1] (AL)

The stress–strain relationship is formed by successive iterative approximations to an algebraic
Reynolds-stress model. Free coe�cients are calibrated by reference to DNS data for a channel
�ow.

C�=
−a∗12fP

(1 + �	 2=3− �
2)�∗
(13)

	1 = 6(a∗11 − a∗22)(fP=�∗)2; 	2 = (a∗11 − a∗22)(fP=�∗)2; 	3 = 0


1 = 4
3C�

�	 2(fP=�∗)2; 
2 = 4C� �
2(fP=�∗)2


3 = 6C� �
2(fP=�∗)2; 
4 = 6C� �	 �
(fP=�∗)2 (14)

f�=f1 =f2 = 1; D=0 (15)

S�=C2f2
�(1)�
k

exp(−0:0038y∗2); �(1) =
C∗3=4
� k3=2

l(1)�
; C∗

� =0:09 (16)

�	=0:222; �
=0:623 (17)

The dissipation length is based on the results of DNS data:

l(1)� =0:179yn(1 + 128=y
∗)[1− exp(−y∗2=279)] (18)

where yn is the distance from the nearest wall and y∗ ≡yn
√
k=� is a dimensionless distance.
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The anisotropy-tensor components a∗ij and the shear parameter �
∗ in equilibrium condition

are calibrated from DNS data for plane channel �ow:

a∗11 = 1 + 0:42 exp(0:296
√
y∗ − 0:040y∗)− 2=3

a∗22 = 0:404[1− exp(0:001y∗ − 0:000147y∗2)]− 2=3
a∗12 =−0:3[1− exp(−0:00443√y∗ − 0:0189y∗)]
�∗ =3:33[1− exp(−0:45y∗)][1 + 0:277y∗3=2 exp(−0:088y∗)] (19)

The constants in turbulent transport equations are

c1 = 1:44; c2 = 1:83; �k =
1:0

1 + �	 2=3− �
2
; ��=

1:37

1 + �	 2=3− �
2
(20)

The non-equilibrium parameter which accounts for departures of the local shear parameter
�=

√
sklskl + wklwkl is

fP =
2f0

1 +
√
1 + 4f0(f0 − 1)(�=�∗)2

f0 = 1 + 1:25 max(0:09�∗2; 1:0) (21)

3.3. Shih et al. (1997) [1] (SHIH)

The cubic constitutive relation for the Reynolds stresses is derived using the invariant theory
in continuum mechanics and the generalized Cayley–Hamilton formulations.
The stress–strain relationship for incompressible �ow is

aij =−2C�f�sij − A3(sikwkj − wikskj)
+2A5(wiksklslj − siksklwlj + wiksklwlj − 1

3wklslmwmk�ij + IIssij) (22)

where the second principal invariant of sij is IIs= 1
2(skksmm − sklskl).
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s∗=
√
sklskl; w∗=

√
wijwij; U ∗=

√
sklskl + wklwkl (25)

f1 = 1; f2 = 1− 0:22 exp(−R2t =36); f�=[1− exp(−a1y∗ − a3y∗3 − a5y∗5)]1=2 (26)
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where a1 = 1:7× 10−3, a3 = 1:0× 10−9, a5 = 5:0× 10−10.

D=0; S�= ��t

(
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)2
(27)

Wall boundary conditions for k and � are: kw=0:25u2� , �w=0:251u
4
�=�, where u� ≡

√
�w=�

is the friction velocity and �w is the dynamic wall shear stress.

3.4. Merci et al. (2001) [12] (MDVD)

This cubic model combined with a new transport equation for the dissipation rate, in which a
low-Reynolds source term is introduced. The model has been checked on di�erent realizability
constraints.

�t =�C�f�k�t ; C�=(A1 + As max(�s; �w))−1 (28)

where �t = k=�+
√
�=�� is the turbulence time scale.
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√
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3 arccos(
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6W ); W =21:5

sijsjkski
�s3

(29)

	1 = q1; 	2 = q2 + q1=6; 	3 = 0; 
1 = 
2 = − c; 
3 = 0; 
4 = 2c (30)

q1 = (7 + 3 max(�s; �w) + 1:2× 10−2 max( �s3; �w3))−1

q2 = (1:7 + 5:4 max(�s; �w) + 3× 10−2 max( �s3; �w3))−1

�s¿ �w; c= − 600C4�; �s ¡ �w; c= −min(600C4�; 4f�C�=( �w2 − �s2)) (31)

f�=1− exp(−4:2× 10−2
√
y∗ − 5:1× 10−4y∗1:5 − 3:65× 10−10y∗5)

f1 = 1; f2 = 1− 0:22 exp
(
−Re

2
T

36

)
(32)

where ReT =�k�t=� is the turbulence Reynolds number.

D=0; S�=0 (33)

In the transport equation for �, C2 = 1:83+0:075 �w=(1+ �s2), which depends on the rotation.
The source term of the dissipation rate equation is

(C1f1Gk − C2f2��)=�t + E (34)

where E= −1:8(1−f�)(�+�t=��)(@k=@xi)@�−1t =@xi is the cross-di�usion term, which only has
an in�uence near the wall.

4. NUMERICAL METHOD

All models are computed by the same code based on the �nite-volume method with non-
orthogonal grids [14]. Variable storage is co-located and cell-centred, with Rhie–Chow in-
terpolation for cell-face mass �uxes. The SIMPLE pressure–correction algorithm is used to
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obtain the pressure �eld. The convection and di�usion terms of all the equations, including
the momentum equations in three directions and the model transport equations for turbulence
quantities, are approximated by the second-order central di�erencing scheme. The deferred
correction technique has been used for the discretization of the convection term. The Stone’s
strongly implicit procedure (SIP) method is employed with under-relaxation factors.
Convergence is judged by monitoring the magnitude of the absolute residual sources of

mass and momentum, normalized by the respective inlet �uxes. The iteration is continued
until all above residuals fell below 0.05%.

5. RESULTS AND DISCUSSIONS

5.1. Axially rotating pipe �ow

Imao et al. [8] conducted this experiment to study the e�ects of the swirl driven by a rotating
pipe wall on turbulent �ow characteristics. The pipe inner diameter D is 30 mm. According
to the experiment, a fully developed �ow was established after the pipe length L=120D. The
dimensionless rotation rate N =0:5, where

N =Wwall=um (35)

In the above de�nition, Wwall is the tangential wall velocity and um is the bulk mean axial
velocity. The Reynolds number based on um and D is 20 000.
At the entrance, uniform axial velocity was speci�ed. With the pipe rotation, the �ow

developed axially, radially and tangentially. A 200× 120 highly stretched non-uniform grid
was used, ensuring y+¡0:5 along the �rst grid-line from the wall.
The �nal developed axial and tangential velocity pro�les are shown in Figure 1. SKE is

completely unable to capture any swirl e�ect. The results show that SKE yields a solid body
rotation, while all cubic models correctly represent the parabolic distribution of tangential
velocity. Also axial velocity pro�le is described well by cubic models.
A fully developed rotating pipe �ow provides a very clear test case for checking the

turbulence model’s ability to model swirling �ows [1]. In cubic models except for AL, the
coe�cients of cubic terms 
3 and 
4 are calibrated by studying this �ow, which results in

3 = 0. However, it is shown that both 
3 and 
4 cubic terms are important [7]. Therefore,
there exist some restrictions in these models.

5.2. Jet in strongly swirling con�ned �ow

Experimental data had been obtained by So et al. [9]. This case is designed to examine the
interaction between swirl-induced curvature and turbulence. The �ow geometry is shown in
Figure 2. A strongly swirling outer �ow, characterized by the swirl number

S=
∫ R

0
UWr2 dr

/
R
∫ R

0
U 2r dr=2:25 (36)

was introduced into a chamber of radius R=62:5mm together with a central non-swirling jet
of diameter d=8:73 mm. The latter is introduced to inhibit extensive reverse �ow along the
centreline. The average velocity upstream was about 6:8m=s. Based on it and the diameter of
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Figure 1. Fully developed axial and tangential velocity pro�les in the axially rotating pipe.

Figure 2. Geometry of strongly swirling-con�ned jet �ow.

the test section, the characteristic Reynolds number was Re=5:49× 104. The axial velocity at
the jet exit is 25:4 m=s, which makes the jet Reynolds number Rej=1:438× 104 based on d.
The inlet plane was located at x=d=1, where the measured data were speci�ed. The tur-

bulent kinetic energy k is calculated from the measured and assumed normal stresses. The
dissipation rate is calculated as �= k1:5=0:36R [2]. Because of the strongly swirling condition,
the �ow is close to subcritical. It was found that subcritical state �ow is highly sensitive
to the perturbation far downstream [15]. Therefore, at the exit plane x=d=40, the measured
axial velocity is prescribed to avoid the predictive uncertainties [2]. Zero-gradient conditions
are adopted for all other variables. At both inlet and exit planes, the measured axial velocity
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Figure 3. Axial velocity pro�les.

pro�les have been corrected slightly by about 6% in total so that they both correspond to the
measured mass �ow rate of 104:8 gm=s.
The grid with 150× 50 cells is employed, which is �ne enough to minimize the e�ects of

numerical di�usion [16]. This non-uniform grid ensures y+¡0:2 along the �rst grid-line from
the wall for the use of low-Reynolds-number turbulence models.
Figure 3 present the axial velocity pro�les at di�erent locations. SHIH predicts a rapid

decay of centreline velocity and gives a large reserve �ow region along the centreline. This
perhaps suggests an overestimation of swirl-induced turbulence damping. It is clear to see that
MDVD simulates the decay of central jet correctly.
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Figure 4. Tangential velocity pro�les.

Figure 4 show the tangential velocity pro�les. SKE predicts a solid body pro�le of the tan-
gential velocity, while cubic models mimic the observed combined forced-free vortex motion.
The result of AL agrees with experimental data fairly well. This is due to the special con-
sideration of model derivation and calibration. The stress–strain relationship of AL is formed
by successive iterative approximations to an algebraic stress model (ASM), and the free co-
e�cients are just calibrated by DNS data of a channel �ow so that the special calibration of
cubic term is avoided.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1355–1370



CUBIC EDDY-VISCOSITY TURBULENCE MODELS 1365

uv (m2/s2)

r 
(m

)
r (

m
)

r (
m

)
r 

(m
)

-6 -3 0 3 6 9
0

0.02

0.04

0.06

SKE
CLS
AL
SHIH
MDVD

x/d=2

uv (m2/s2)
-6 -3 0 3 6 9

0

0.02

0.04

0.06

SKE
CLS
AL
SHIH
MDVD

x/d=5

uv (m2/s2)

-6 -3 0 3 6 9
0

0.02

0.04

0.06

SKE
CLS
AL
SHIH
MDVD

x/d=10

uv (m2/s2)

-6 -3 0 3 6 9
0

0.02

0.04

0.06

SKE
CLS
AL
SHIH
MDVD

x/d=20

Figure 5. Shear stress uv pro�les.

In Figure 5, the cubic model predictions indicate a lower level of shear stress uv, whereas
no measured data are available to support the simulation. The reduction of the shear stress
level produced by cubic models is responded to swirl-induced strains.
The predicted turbulence intensities are compared with the experiment in Figures 6 and 7.

Both the measurements and predictions show nearly isotropic normal stresses. None of the
models satisfactorily predicts the turbulence intensities. The cubic models return a lower level
of normal stresses in response to the swirl-related strain at this high level of swirling �ow and
agree with the measurements. A subcritical state appears to re�ect a strong decay in turbulent
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Figure 6. Axial turbulence intensity pro�les.

mixing. SKE fails to capture the subcritical nature of the �ow, whereas cubic models appear
to represent the primary �ow features correctly.
It is interesting to compare the performances of MDVD and MDVD2 (MDVD without

the 
4 term). Figures 8 and 9 show the results of axial and tangential velocity pro�les by
these two models, respectively. It can be seen that MDVD2 obtains results closer to the
measurements. This is di�cult to explain. However, a fully developed rotating pipe �ow
provides a too simple test case for determining the cubic terms, so a more precise calibration
is necessary.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1355–1370



CUBIC EDDY-VISCOSITY TURBULENCE MODELS 1367

w' (m/s)

w' (m/s) w' (m/s)

w' (m/s)
0 2 4 6

0

0.02

0.04

0.06
EXP
SKE
CLS
AL
SHIH
MDVD

x/d=2

0 2 4 6
0

0.02

0.04

0.06
EXP
SKE
CLS
AL
SHIH
MDVD

x/d=5

r (
m

)
r (

m
)

r (
m

)
r (

m
)

0 2 4 6
0

0.02

0.04

0.06
EXP
SKE
CLS
AL
SHIH
MDVD

x/d=10

0 2 4 6
0

0.02

0.04

0.06
EXP
SKE
CLS
AL
SHIH
MDVD

x/d=20

Figure 7. Tangential turbulence intensity pro�les.

6. CONCLUSIONS

The present studies demonstrate the superiority of cubic models over SKE in the prediction of
strongly swirling �ows. SKE does not contain any mechanism to describe the stabilizing e�ects
of swirling motion and as a consequence it performs poorly. While cubic models are sensitive
to the swirl-induced body forces and reproduce the major features of the subcritical �ow,
including the strong stabilizing e�ects of the swirl on the Reynolds stresses and tangential
velocity, which are in reasonable agreement with the measurements.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1355–1370



1368 X. YANG AND H. MA

-5 0 5 10 15
0

0.02

0.04

0.06

EXP
MDVD
MDVD2

x/d=2

-5 0 5 10 15
0

0.02

0.04

0.06

EXP
MDVD
MDVD2

x/d=5

U (m/s) U (m/s)

U (m/s) U (m/s)

r (
m

)
r (

m
)

r (
m

)

-5 0 5 10 15
0

0.02

0.04

0.06

EXP
MDVD
MDVD2

x/d=10

r (
m

)

-5 0 5 10 15
0

0.02

0.04

0.06

EXP
MDVD
MDVD2

x/d=20

Figure 8. Axial velocity pro�les of MDVD.

A fully developed rotating pipe �ow does not contain enough �ow physics, hence is too
simple for calibrating the cubic-order turbulence model and the calibration of cubic terms is
still a topic of investigation. The results of AL show that explicit algebraic stress models
(EASM) provide an e�ective approach to predict strongly swirling �ows, which require fewer
calibrations and contain more �ow physics.
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Figure 9. Tangential velocity pro�les of MDVD.
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